Welcome to EnviroDIY, a community for do-it-yourself environmental science and monitoring. EnviroDIY is part of WikiWatershed, a web toolkit designed to help citizens, conservation practitioners, municipal decision-makers, researchers, educators, and students advance knowledge and stewardship of fresh water. New to EnviroDIY? Start here

Reply To: DRWI_LTE Mayfly Communication with Monitor My Watershed

Home Forums Mayfly Data Logger DRWI_LTE Mayfly Communication with Monitor My Watershed Reply To: DRWI_LTE Mayfly Communication with Monitor My Watershed

#15254
C Nolan
Participant

<h4>This is the error message I get:</h4>
Arduino: 1.8.13 (Windows Store 1.8.42.0) (Windows 10), Board: “EnviroDIY Mayfly 1284p”

C:\Users\cnolan\Documents\Arduino\libraries\EnviroDIY_ModularSensors\src\sensors\ApogeeSQ212.cpp:15:10: fatal error: Adafruit_ADS1015.h: No such file or directory
#include <Adafruit_ADS1015.h>
^~~~~~~~~~~~~~~~~~~~
compilation terminated.
exit status 1
Error compiling for board EnviroDIY Mayfly 1284p.

This report would have more information with
“Show verbose output during compilation”
option enabled in File -> Preferences.
<h4></h4>
<h4>From Monitor My Watershed monitoring site…..</h4>
<h4>Token and UUID List</h4>
const char *UUIDs[] = // UUID array for device sensors
{
“78ab371b-7a7f-4936-8a2c-ce3956747018”, // Electrical conductivity (Decagon_CTD-10_Cond)
“b417acdd-5f00-4c62-916d-2ecf1cf2a4b8”, // Water depth (Decagon_CTD-10_Depth)
“9b218458-15ba-4024-abab-838159115083”, // Temperature (Decagon_CTD-10_Temp)
“f963c526-b4c3-4627-8704-3137cee1e60a”, // Battery voltage (EnviroDIY_Mayfly_Batt)
“80e8781d-0d2c-4ca4-ab8f-13ab35f2152b”, // Temperature (EnviroDIY_Mayfly_Temp)
“3f2ab94a-d4de-4fd9-9247-ff6b2bcd15e4” // Percent full scale (Digi_Cellular_SignalPercent)
};
const char *registrationToken = “7c75d699-7abe-41c5-8319-e7adffef22e2”; // Device registration token
const char *samplingFeature = “cfab5780-129c-4ee5-bab7-18aaf69a18b1”; // Sampling feature UUID

 

Current or original Code on Mayfly board:

/** =========================================================================
* @file DRWI_LTE.ino
* @brief Example for DRWI CitSci LTE sites.
*
* @author Sara Geleskie Damiano <sdamiano@stroudcenter.org>
* @copyright (c) 2017-2020 Stroud Water Research Center (SWRC)
* and the EnviroDIY Development Team
* This example is published under the BSD-3 license.
*
* Build Environment: Visual Studios Code with PlatformIO
* Hardware Platform: EnviroDIY Mayfly Arduino Datalogger
*
* DISCLAIMER:
* THIS CODE IS PROVIDED “AS IS” – NO WARRANTY IS GIVEN.
* ======================================================================= */

// ==========================================================================
// Defines for the Arduino IDE
// NOTE: These are ONLY needed to compile with the Arduino IDE.
// If you use PlatformIO, you should set these build flags in your
// platformio.ini
// ==========================================================================
/** Start [defines] */
#ifndef TINY_GSM_RX_BUFFER
#define TINY_GSM_RX_BUFFER 64
#endif
#ifndef TINY_GSM_YIELD_MS
#define TINY_GSM_YIELD_MS 2
#endif
/** End [defines] */

// ==========================================================================
// Include the libraries required for any data logger
// ==========================================================================
/** Start [includes] */
// The Arduino library is needed for every Arduino program.
#include <Arduino.h>

// EnableInterrupt is used by ModularSensors for external and pin change
// interrupts and must be explicitly included in the main program.
#include <EnableInterrupt.h>

// To get all of the base classes for ModularSensors, include LoggerBase.
// NOTE: Individual sensor definitions must be included separately.
#include <LoggerBase.h>
/** End [includes] */

// ==========================================================================
// Data Logging Options
// ==========================================================================
/** Start [logging_options] */
// The name of this program file
const char* sketchName = “DRWI_LTE.ino”;
// Logger ID, also becomes the prefix for the name of the data file on SD card
const char* LoggerID = “XXXXX”;
// How frequently (in minutes) to log data
const uint8_t loggingInterval = 5;
// Your logger’s timezone.
const int8_t timeZone = -5; // Eastern Standard Time
// NOTE: Daylight savings time will not be applied! Please use standard time!

// Set the input and output pins for the logger
// NOTE: Use -1 for pins that do not apply
const long serialBaud = 115200; // Baud rate for debugging
const int8_t greenLED = 8; // Pin for the green LED
const int8_t redLED = 9; // Pin for the red LED
const int8_t buttonPin = 21; // Pin for debugging mode (ie, button pin)
const int8_t wakePin = A7; // MCU interrupt/alarm pin to wake from sleep
// Set the wake pin to -1 if you do not want the main processor to sleep.
// In a SAMD system where you are using the built-in rtc, set wakePin to 1
const int8_t sdCardPwrPin = -1; // MCU SD card power pin
const int8_t sdCardSSPin = 12; // SD card chip select/slave select pin
const int8_t sensorPowerPin = 22; // MCU pin controlling main sensor power
/** End [logging_options] */

// ==========================================================================
// Wifi/Cellular Modem Options
// ==========================================================================
/** Start [xbee_cell_transparent] */
// For any Digi Cellular XBee’s
// NOTE: The u-blox based Digi XBee’s (3G global and LTE-M global)
// are more stable used in bypass mode (below)
// The Telit based Digi XBees (LTE Cat1) can only use this mode.
#include <modems/DigiXBeeCellularTransparent.h>

// Create a reference to the serial port for the modem
HardwareSerial& modemSerial = Serial1; // Use hardware serial if possible
const long modemBaud = 9600; // All XBee’s use 9600 by default

// Modem Pins – Describe the physical pin connection of your modem to your board
// NOTE: Use -1 for pins that do not apply
const int8_t modemVccPin = -2; // MCU pin controlling modem power
const int8_t modemStatusPin = 19; // MCU pin used to read modem status
const bool useCTSforStatus = false; // Flag to use the modem CTS pin for status
const int8_t modemResetPin = 20; // MCU pin connected to modem reset pin
const int8_t modemSleepRqPin = 23; // MCU pin for modem sleep/wake request
const int8_t modemLEDPin = redLED; // MCU pin connected an LED to show modem
// status (-1 if unconnected)

// Network connection information
const char* apn = “hologram”; // The APN for the gprs connection

DigiXBeeCellularTransparent modemXBCT(&modemSerial, modemVccPin, modemStatusPin,
useCTSforStatus, modemResetPin,
modemSleepRqPin, apn);
// Create an extra reference to the modem by a generic name
DigiXBeeCellularTransparent modem = modemXBCT;
/** End [xbee_cell_transparent] */

// ==========================================================================
// Using the Processor as a Sensor
// ==========================================================================
/** Start [processor_sensor] */
#include <sensors/ProcessorStats.h>

// Create the main processor chip “sensor” – for general metadata
const char* mcuBoardVersion = “v0.5b”;
ProcessorStats mcuBoard(mcuBoardVersion);
/** End [processor_sensor] */

// ==========================================================================
// Maxim DS3231 RTC (Real Time Clock)
// ==========================================================================
/** Start [ds3231] */
#include <sensors/MaximDS3231.h>

// Create a DS3231 sensor object
MaximDS3231 ds3231(1);
/** End [ds3231] */

// ==========================================================================
// Campbell OBS 3 / OBS 3+ Analog Turbidity Sensor
// ==========================================================================
/** Start [obs3] */
#include <sensors/CampbellOBS3.h>

const int8_t OBS3Power = sensorPowerPin; // Power pin (-1 if unconnected)
const uint8_t OBS3NumberReadings = 10;
const uint8_t ADSi2c_addr = 0x48; // The I2C address of the ADS1115 ADC
// Campbell OBS 3+ *Low* Range Calibration in Volts
const int8_t OBSLowADSChannel = 0; // ADS channel for *low* range output
const float OBSLow_A = 0.000E+00; // “A” value (X^2) [*low* range]
const float OBSLow_B = 1.000E+00; // “B” value (X) [*low* range]
const float OBSLow_C = 0.000E+00; // “C” value [*low* range]

// Create a Campbell OBS3+ *low* range sensor object
CampbellOBS3 osb3low(OBS3Power, OBSLowADSChannel, OBSLow_A, OBSLow_B, OBSLow_C,
ADSi2c_addr, OBS3NumberReadings);

// Campbell OBS 3+ *High* Range Calibration in Volts
const int8_t OBSHighADSChannel = 1; // ADS channel for *high* range output
const float OBSHigh_A = 0.000E+00; // “A” value (X^2) [*high* range]
const float OBSHigh_B = 1.000E+00; // “B” value (X) [*high* range]
const float OBSHigh_C = 0.000E+00; // “C” value [*high* range]

// Create a Campbell OBS3+ *high* range sensor object
CampbellOBS3 osb3high(OBS3Power, OBSHighADSChannel, OBSHigh_A, OBSHigh_B,
OBSHigh_C, ADSi2c_addr, OBS3NumberReadings);
/** End [obs3] */

// ==========================================================================
// Meter Hydros 21 Conductivity, Temperature, and Depth Sensor
// ==========================================================================
/** Start [decagon_ctd] */
#include <sensors/DecagonCTD.h>

const char* CTDSDI12address = “1”; // The SDI-12 Address of the CTD
const uint8_t CTDNumberReadings = 6; // The number of readings to average
const int8_t SDI12Power = sensorPowerPin; // Power pin (-1 if unconnected)
const int8_t SDI12Data = 7; // The SDI12 data pin

// Create a Decagon CTD sensor object
DecagonCTD ctd(*CTDSDI12address, SDI12Power, SDI12Data, CTDNumberReadings);
/** End [decagon_ctd] */

// ==========================================================================
// Creating the Variable Array[s] and Filling with Variable Objects
// ==========================================================================
/** Start [variable_arrays] */
Variable* variableList[] = {
new DecagonCTD_Cond(&ctd),
new DecagonCTD_Temp(&ctd),
new DecagonCTD_Depth(&ctd),
new CampbellOBS3_Turbidity(&osb3low, “”, “TurbLow”),
new CampbellOBS3_Turbidity(&osb3high, “”, “TurbHigh”),
new ProcessorStats_Battery(&mcuBoard),
new MaximDS3231_Temp(&ds3231),
new Modem_RSSI(&modem),
new Modem_SignalPercent(&modem),
};

// All UUID’s, device registration, and sampling feature information can be
// pasted directly from Monitor My Watershed. To get the list, click the “View
// token UUID list” button on the upper right of the site page.

// *** CAUTION — CAUTION — CAUTION — CAUTION — CAUTION ***
// Check the order of your variables in the variable list!!!
// Be VERY certain that they match the order of your UUID’s!
// Rearrange the variables in the variable list if necessary to match!
// *** CAUTION — CAUTION — CAUTION — CAUTION — CAUTION ***
const char* UUIDs[] = {
“12345678-abcd-1234-ef00-1234567890ab”, // Electrical conductivity
// (Decagon_CTD-10_Cond)
“12345678-abcd-1234-ef00-1234567890ab”, // Temperature
// (Decagon_CTD-10_Temp)
“12345678-abcd-1234-ef00-1234567890ab”, // Water depth
// (Decagon_CTD-10_Depth)
“12345678-abcd-1234-ef00-1234567890ab”, // Turbidity (Campbell_OBS3_Turb)
“12345678-abcd-1234-ef00-1234567890ab”, // Turbidity (Campbell_OBS3_Turb)
“12345678-abcd-1234-ef00-1234567890ab”, // Battery voltage
// (EnviroDIY_Mayfly_Batt)
“12345678-abcd-1234-ef00-1234567890ab”, // Temperature
// (EnviroDIY_Mayfly_Temp)
“12345678-abcd-1234-ef00-1234567890ab”, // Received signal strength
// indication (Digi_Cellular_RSSI)
“12345678-abcd-1234-ef00-1234567890ab” // Percent full scale
// (Digi_Cellular_SignalPercent)
};
const char* registrationToken =
“12345678-abcd-1234-ef00-1234567890ab”; // Device registration token
const char* samplingFeature =
“12345678-abcd-1234-ef00-1234567890ab”; // Sampling feature UUID

// Count up the number of pointers in the array
int variableCount = sizeof(variableList) / sizeof(variableList[0]);

// Create the VariableArray object
VariableArray varArray(variableCount, variableList, UUIDs);
/** End [variable_arrays] */

// ==========================================================================
// The Logger Object[s]
// ==========================================================================
/** Start [loggers] */
// Create a new logger instance
Logger dataLogger(LoggerID, loggingInterval, &varArray);
/** End [loggers] */

// ==========================================================================
// Creating Data Publisher[s]
// ==========================================================================
/** Start [publishers] */
// Create a data publisher for the Monitor My Watershed/EnviroDIY POST endpoint
#include <publishers/EnviroDIYPublisher.h>
EnviroDIYPublisher EnviroDIYPOST(dataLogger, &modem.gsmClient,
registrationToken, samplingFeature);
/** End [publishers] */

// ==========================================================================
// Working Functions
// ==========================================================================
/** Start [working_functions] */
// Flashes the LED’s on the primary board
void greenredflash(uint8_t numFlash = 4, uint8_t rate = 75) {
for (uint8_t i = 0; i < numFlash; i++) {
digitalWrite(greenLED, HIGH);
digitalWrite(redLED, LOW);
delay(rate);
digitalWrite(greenLED, LOW);
digitalWrite(redLED, HIGH);
delay(rate);
}
digitalWrite(redLED, LOW);
}

// Reads the battery voltage
// NOTE: This will actually return the battery level from the previous update!
float getBatteryVoltage() {
if (mcuBoard.sensorValues[0] == -9999) mcuBoard.update();
return mcuBoard.sensorValues[0];
}

// ==========================================================================
// Arduino Setup Function
// ==========================================================================
/** Start [setup] */
void setup() {
// Start the primary serial connection
Serial.begin(serialBaud);

// Print a start-up note to the first serial port
Serial.print(F(“Now running “));
Serial.print(sketchName);
Serial.print(F(” on Logger “));
Serial.println(LoggerID);
Serial.println();

Serial.print(F(“Using ModularSensors Library version “));
Serial.println(MODULAR_SENSORS_VERSION);
Serial.print(F(“TinyGSM Library version “));
Serial.println(TINYGSM_VERSION);
Serial.println();

// Start the serial connection with the modem
modemSerial.begin(modemBaud);

// Set up pins for the LED’s
pinMode(greenLED, OUTPUT);
digitalWrite(greenLED, LOW);
pinMode(redLED, OUTPUT);
digitalWrite(redLED, LOW);
// Blink the LEDs to show the board is on and starting up
greenredflash();

// Set the timezones for the logger/data and the RTC
// Logging in the given time zone
Logger::setLoggerTimeZone(timeZone);
// It is STRONGLY RECOMMENDED that you set the RTC to be in UTC (UTC+0)
Logger::setRTCTimeZone(0);

// Attach the modem and information pins to the logger
dataLogger.attachModem(modem);
modem.setModemLED(modemLEDPin);
dataLogger.setLoggerPins(wakePin, sdCardSSPin, sdCardPwrPin, buttonPin,
greenLED);

// Begin the logger
dataLogger.begin();

// Note: Please change these battery voltages to match your battery
// Set up the sensors, except at lowest battery level
if (getBatteryVoltage() > 3.4) {
Serial.println(F(“Setting up sensors…”));
varArray.setupSensors();
}

// Extra modem set-up – selecting AT&T as the carrier and LTE-M only
// NOTE: The code for this could be shortened using the “commandMode” and
// other XBee specific commands in TinyGSM. I’ve written it this way in
// this example to show how the settings could be changed in either bypass
// OR transparent mode.
Serial.println(F(“Waking modem and setting Cellular Carrier Options…”));
modem.modemWake(); // NOTE: This will also set up the modem
// Go back to command mode to set carrier options
for (uint8_t i = 0; i < 5; i++) {
// Wait the required guard time before entering command mode
delay(1010);
modem.gsmModem.streamWrite(GF(“+++”)); // enter command mode
if (modem.gsmModem.waitResponse(2000, GF(“OK\r”)) == 1) break;
}
// Carrier Profile – 0 = Automatic selection
// – 1 = No profile/SIM ICCID selected
// – 2 = AT&T
// – 3 = Verizon
// NOTE: To select T-Mobile, you must enter bypass mode!
modem.gsmModem.sendAT(GF(“CP”), 2);
modem.gsmModem.waitResponse(GF(“OK\r”));
// Cellular network technology – 0 = LTE-M with NB-IoT fallback
// – 1 = NB-IoT with LTE-M fallback
// – 2 = LTE-M only
// – 3 = NB-IoT only
modem.gsmModem.sendAT(GF(“N#”), 2);
modem.gsmModem.waitResponse();
// Write changes to flash and apply them
Serial.println(F(“Wait while applying changes…”));
// Write changes to flash
modem.gsmModem.sendAT(GF(“WR”));
modem.gsmModem.waitResponse(GF(“OK\r”));
// Apply changes
modem.gsmModem.sendAT(GF(“AC”));
modem.gsmModem.waitResponse(GF(“OK\r”));
// Reset the cellular component to ensure network settings are changed
modem.gsmModem.sendAT(GF(“!R”));
modem.gsmModem.waitResponse(30000L, GF(“OK\r”));
// Force reset of the Digi component as well
// This effectively exits command mode
modem.gsmModem.sendAT(GF(“FR”));
modem.gsmModem.waitResponse(5000L, GF(“OK\r”));

// Sync the clock if it isn’t valid or we have battery to spare
if (getBatteryVoltage() > 3.55 || !dataLogger.isRTCSane()) {
// Synchronize the RTC with NIST
// This will also set up the modem
dataLogger.syncRTC();
}

// Create the log file, adding the default header to it
// Do this last so we have the best chance of getting the time correct and
// all sensor names correct
// Writing to the SD card can be power intensive, so if we’re skipping
// the sensor setup we’ll skip this too.
if (getBatteryVoltage() > 3.4) {
Serial.println(F(“Setting up file on SD card”));
dataLogger.turnOnSDcard(
true); // true = wait for card to settle after power up
dataLogger.createLogFile(true); // true = write a new header
dataLogger.turnOffSDcard(
true); // true = wait for internal housekeeping after write
}

// Call the processor sleep
Serial.println(F(“Putting processor to sleep\n”));
dataLogger.systemSleep();
}
/** End [setup] */

// ==========================================================================
// Arduino Loop Function
// ==========================================================================
/** Start [loop] */
// Use this short loop for simple data logging and sending
void loop() {
// Note: Please change these battery voltages to match your battery
// At very low battery, just go back to sleep
if (getBatteryVoltage() < 3.4) {
dataLogger.systemSleep();
}
// At moderate voltage, log data but don’t send it over the modem
else if (getBatteryVoltage() < 3.55) {
dataLogger.logData();
}
// If the battery is good, send the data to the world
else {
dataLogger.logDataAndPublish();
}
}
/** End [loop] */

 

After Changes…….

/** =========================================================================
* @file DRWI_LTE.ino
* @brief Example for DRWI CitSci LTE sites.
*
* @author Sara Geleskie Damiano <sdamiano@stroudcenter.org>
* @copyright (c) 2017-2020 Stroud Water Research Center (SWRC)
* and the EnviroDIY Development Team
* This example is published under the BSD-3 license.
*
* Build Environment: Visual Studios Code with PlatformIO
* Hardware Platform: EnviroDIY Mayfly Arduino Datalogger
*
* DISCLAIMER:
* THIS CODE IS PROVIDED “AS IS” – NO WARRANTY IS GIVEN.
* ======================================================================= */

// ==========================================================================
// Defines for the Arduino IDE
// NOTE: These are ONLY needed to compile with the Arduino IDE.
// If you use PlatformIO, you should set these build flags in your
// platformio.ini
// ==========================================================================
/** Start [defines] */
#ifndef TINY_GSM_RX_BUFFER
#define TINY_GSM_RX_BUFFER 64
#endif
#ifndef TINY_GSM_YIELD_MS
#define TINY_GSM_YIELD_MS 2
#endif
/** End [defines] */

// ==========================================================================
// Include the libraries required for any data logger
// ==========================================================================
/** Start [includes] */
// The Arduino library is needed for every Arduino program.
#include <Arduino.h>

// EnableInterrupt is used by ModularSensors for external and pin change
// interrupts and must be explicitly included in the main program.
#include <EnableInterrupt.h>

// To get all of the base classes for ModularSensors, include LoggerBase.
// NOTE: Individual sensor definitions must be included separately.
#include <LoggerBase.h>
/** End [includes] */

// ==========================================================================
// Data Logging Options
// ==========================================================================
/** Start [logging_options] */
// The name of this program file
const char* sketchName = “DRWI_LTE.ino”;
// Logger ID, also becomes the prefix for the name of the data file on SD card
const char* LoggerID = “Lack2_Arch”;
// How frequently (in minutes) to log data
const uint8_t loggingInterval = 5;
// Your logger’s timezone.
const int8_t timeZone = -5; // Eastern Standard Time
// NOTE: Daylight savings time will not be applied! Please use standard time!

// Set the input and output pins for the logger
// NOTE: Use -1 for pins that do not apply
const long serialBaud = 115200; // Baud rate for debugging
const int8_t greenLED = 8; // Pin for the green LED
const int8_t redLED = 9; // Pin for the red LED
const int8_t buttonPin = 21; // Pin for debugging mode (ie, button pin)
const int8_t wakePin = A7; // MCU interrupt/alarm pin to wake from sleep
// Set the wake pin to -1 if you do not want the main processor to sleep.
// In a SAMD system where you are using the built-in rtc, set wakePin to 1
const int8_t sdCardPwrPin = -1; // MCU SD card power pin
const int8_t sdCardSSPin = 12; // SD card chip select/slave select pin
const int8_t sensorPowerPin = 22; // MCU pin controlling main sensor power
/** End [logging_options] */

// ==========================================================================
// Wifi/Cellular Modem Options
// ==========================================================================
/** Start [xbee_cell_transparent] */
// For any Digi Cellular XBee’s
// NOTE: The u-blox based Digi XBee’s (3G global and LTE-M global)
// are more stable used in bypass mode (below)
// The Telit based Digi XBees (LTE Cat1) can only use this mode.
#include <modems/DigiXBeeCellularTransparent.h>

// Create a reference to the serial port for the modem
HardwareSerial& modemSerial = Serial1; // Use hardware serial if possible
const long modemBaud = 9600; // All XBee’s use 9600 by default

// Modem Pins – Describe the physical pin connection of your modem to your board
// NOTE: Use -1 for pins that do not apply
const int8_t modemVccPin = -2; // MCU pin controlling modem power
const int8_t modemStatusPin = 19; // MCU pin used to read modem status
const bool useCTSforStatus = false; // Flag to use the modem CTS pin for status
const int8_t modemResetPin = 20; // MCU pin connected to modem reset pin
const int8_t modemSleepRqPin = 23; // MCU pin for modem sleep/wake request
const int8_t modemLEDPin = redLED; // MCU pin connected an LED to show modem
// status (-1 if unconnected)

// Network connection information
const char* apn = “hologram”; // The APN for the gprs connection

DigiXBeeCellularTransparent modemXBCT(&modemSerial, modemVccPin, modemStatusPin,
useCTSforStatus, modemResetPin,
modemSleepRqPin, apn);
// Create an extra reference to the modem by a generic name
DigiXBeeCellularTransparent modem = modemXBCT;
/** End [xbee_cell_transparent] */

// ==========================================================================
// Using the Processor as a Sensor
// ==========================================================================
/** Start [processor_sensor] */
#include <sensors/ProcessorStats.h>

// Create the main processor chip “sensor” – for general metadata
const char* mcuBoardVersion = “v0.5b”;
ProcessorStats mcuBoard(mcuBoardVersion);
/** End [processor_sensor] */

// ==========================================================================
// Maxim DS3231 RTC (Real Time Clock)
// ==========================================================================
/** Start [ds3231] */
#include <sensors/MaximDS3231.h>

// Create a DS3231 sensor object
MaximDS3231 ds3231(1);
/** End [ds3231] */

// ==========================================================================
// Campbell OBS 3 / OBS 3+ Analog Turbidity Sensor
// ==========================================================================
/** Start [obs3] */
#include <sensors/CampbellOBS3.h>

const int8_t OBS3Power = sensorPowerPin; // Power pin (-1 if unconnected)
const uint8_t OBS3NumberReadings = 10;
const uint8_t ADSi2c_addr = 0x48; // The I2C address of the ADS1115 ADC
// Campbell OBS 3+ *Low* Range Calibration in Volts
const int8_t OBSLowADSChannel = 0; // ADS channel for *low* range output
const float OBSLow_A = 0.000E+00; // “A” value (X^2) [*low* range]
const float OBSLow_B = 1.000E+00; // “B” value (X) [*low* range]
const float OBSLow_C = 0.000E+00; // “C” value [*low* range]

// Create a Campbell OBS3+ *low* range sensor object
CampbellOBS3 osb3low(OBS3Power, OBSLowADSChannel, OBSLow_A, OBSLow_B, OBSLow_C,
ADSi2c_addr, OBS3NumberReadings);

// Campbell OBS 3+ *High* Range Calibration in Volts
const int8_t OBSHighADSChannel = 1; // ADS channel for *high* range output
const float OBSHigh_A = 0.000E+00; // “A” value (X^2) [*high* range]
const float OBSHigh_B = 1.000E+00; // “B” value (X) [*high* range]
const float OBSHigh_C = 0.000E+00; // “C” value [*high* range]

// Create a Campbell OBS3+ *high* range sensor object
CampbellOBS3 osb3high(OBS3Power, OBSHighADSChannel, OBSHigh_A, OBSHigh_B,
OBSHigh_C, ADSi2c_addr, OBS3NumberReadings);
/** End [obs3] */

// ==========================================================================
// Meter Hydros 21 Conductivity, Temperature, and Depth Sensor
// ==========================================================================
/** Start [decagon_ctd] */
#include <sensors/DecagonCTD.h>

const char* CTDSDI12address = “1”; // The SDI-12 Address of the CTD
const uint8_t CTDNumberReadings = 6; // The number of readings to average
const int8_t SDI12Power = sensorPowerPin; // Power pin (-1 if unconnected)
const int8_t SDI12Data = 7; // The SDI12 data pin

// Create a Decagon CTD sensor object
DecagonCTD ctd(*CTDSDI12address, SDI12Power, SDI12Data, CTDNumberReadings);
/** End [decagon_ctd] */

// ==========================================================================
// Creating the Variable Array[s] and Filling with Variable Objects
// ==========================================================================
/** Start [variable_arrays] */
Variable* variableList[] = {
new DecagonCTD_Cond(&ctd),
new DecagonCTD_Depth(&ctd),
new DecagonCTD_Temp(&ctd),
// new CampbellOBS3_Turbidity(&osb3low, “”, “TurbLow”),
// new CampbellOBS3_Turbidity(&osb3high, “”, “TurbHigh”),
new ProcessorStats_Battery(&mcuBoard),
new MaximDS3231_Temp(&ds3231),
// new Modem_RSSI(&modem),
new Modem_SignalPercent(&modem),
};

// All UUID’s, device registration, and sampling feature information can be
// pasted directly from Monitor My Watershed. To get the list, click the “View
// token UUID list” button on the upper right of the site page.

// *** CAUTION — CAUTION — CAUTION — CAUTION — CAUTION ***
// Check the order of your variables in the variable list!!!
// Be VERY certain that they match the order of your UUID’s!
// Rearrange the variables in the variable list if necessary to match!
// *** CAUTION — CAUTION — CAUTION — CAUTION — CAUTION ***
const char *UUIDs[] = // UUID array for device sensors
{
“78ab371b-7a7f-4936-8a2c-ce3956747018”, // Electrical conductivity (Decagon_CTD-10_Cond)
“b417acdd-5f00-4c62-916d-2ecf1cf2a4b8”, // Water depth (Decagon_CTD-10_Depth)
“9b218458-15ba-4024-abab-838159115083”, // Temperature (Decagon_CTD-10_Temp)
“f963c526-b4c3-4627-8704-3137cee1e60a”, // Battery voltage (EnviroDIY_Mayfly_Batt)
“80e8781d-0d2c-4ca4-ab8f-13ab35f2152b”, // Temperature (EnviroDIY_Mayfly_Temp)
“3f2ab94a-d4de-4fd9-9247-ff6b2bcd15e4” // Percent full scale (Digi_Cellular_SignalPercent)
};
const char *registrationToken = “7c75d699-7abe-41c5-8319-e7adffef22e2”; // Device registration token
const char *samplingFeature = “cfab5780-129c-4ee5-bab7-18aaf69a18b1”; // Sampling feature UUID
// Count up the number of pointers in the array
int variableCount = sizeof(variableList) / sizeof(variableList[0]);

// Create the VariableArray object
VariableArray varArray(variableCount, variableList, UUIDs);
/** End [variable_arrays] */

// ==========================================================================
// The Logger Object[s]
// ==========================================================================
/** Start [loggers] */
// Create a new logger instance
Logger dataLogger(LoggerID, loggingInterval, &varArray);
/** End [loggers] */

// ==========================================================================
// Creating Data Publisher[s]
// ==========================================================================
/** Start [publishers] */
// Create a data publisher for the Monitor My Watershed/EnviroDIY POST endpoint
#include <publishers/EnviroDIYPublisher.h>
EnviroDIYPublisher EnviroDIYPOST(dataLogger, &modem.gsmClient,
registrationToken, samplingFeature);
/** End [publishers] */

// ==========================================================================
// Working Functions
// ==========================================================================
/** Start [working_functions] */
// Flashes the LED’s on the primary board
void greenredflash(uint8_t numFlash = 4, uint8_t rate = 75) {
for (uint8_t i = 0; i < numFlash; i++) {
digitalWrite(greenLED, HIGH);
digitalWrite(redLED, LOW);
delay(rate);
digitalWrite(greenLED, LOW);
digitalWrite(redLED, HIGH);
delay(rate);
}
digitalWrite(redLED, LOW);
}

// Reads the battery voltage
// NOTE: This will actually return the battery level from the previous update!
float getBatteryVoltage() {
if (mcuBoard.sensorValues[0] == -9999) mcuBoard.update();
return mcuBoard.sensorValues[0];
}

// ==========================================================================
// Arduino Setup Function
// ==========================================================================
/** Start [setup] */
void setup() {
// Start the primary serial connection
Serial.begin(serialBaud);

// Print a start-up note to the first serial port
Serial.print(F(“Now running “));
Serial.print(sketchName);
Serial.print(F(” on Logger “));
Serial.println(LoggerID);
Serial.println();

Serial.print(F(“Using ModularSensors Library version “));
Serial.println(MODULAR_SENSORS_VERSION);
Serial.print(F(“TinyGSM Library version “));
Serial.println(TINYGSM_VERSION);
Serial.println();

// Start the serial connection with the modem
modemSerial.begin(modemBaud);

// Set up pins for the LED’s
pinMode(greenLED, OUTPUT);
digitalWrite(greenLED, LOW);
pinMode(redLED, OUTPUT);
digitalWrite(redLED, LOW);
// Blink the LEDs to show the board is on and starting up
greenredflash();

// Set the timezones for the logger/data and the RTC
// Logging in the given time zone
Logger::setLoggerTimeZone(timeZone);
// It is STRONGLY RECOMMENDED that you set the RTC to be in UTC (UTC+0)
Logger::setRTCTimeZone(0);

// Attach the modem and information pins to the logger
dataLogger.attachModem(modem);
modem.setModemLED(modemLEDPin);
dataLogger.setLoggerPins(wakePin, sdCardSSPin, sdCardPwrPin, buttonPin,
greenLED);

// Begin the logger
dataLogger.begin();

// Note: Please change these battery voltages to match your battery
// Set up the sensors, except at lowest battery level
if (getBatteryVoltage() > 3.4) {
Serial.println(F(“Setting up sensors…”));
varArray.setupSensors();
}

// Extra modem set-up – selecting AT&T as the carrier and LTE-M only
// NOTE: The code for this could be shortened using the “commandMode” and
// other XBee specific commands in TinyGSM. I’ve written it this way in
// this example to show how the settings could be changed in either bypass
// OR transparent mode.
Serial.println(F(“Waking modem and setting Cellular Carrier Options…”));
modem.modemWake(); // NOTE: This will also set up the modem
// Go back to command mode to set carrier options
for (uint8_t i = 0; i < 5; i++) {
// Wait the required guard time before entering command mode
delay(1010);
modem.gsmModem.streamWrite(GF(“+++”)); // enter command mode
if (modem.gsmModem.waitResponse(2000, GF(“OK\r”)) == 1) break;
}
// Carrier Profile – 0 = Automatic selection
// – 1 = No profile/SIM ICCID selected
// – 2 = AT&T
// – 3 = Verizon
// NOTE: To select T-Mobile, you must enter bypass mode!
modem.gsmModem.sendAT(GF(“CP”), 2);
modem.gsmModem.waitResponse(GF(“OK\r”));
// Cellular network technology – 0 = LTE-M with NB-IoT fallback
// – 1 = NB-IoT with LTE-M fallback
// – 2 = LTE-M only
// – 3 = NB-IoT only
modem.gsmModem.sendAT(GF(“N#”), 2);
modem.gsmModem.waitResponse();
// Write changes to flash and apply them
Serial.println(F(“Wait while applying changes…”));
// Write changes to flash
modem.gsmModem.sendAT(GF(“WR”));
modem.gsmModem.waitResponse(GF(“OK\r”));
// Apply changes
modem.gsmModem.sendAT(GF(“AC”));
modem.gsmModem.waitResponse(GF(“OK\r”));
// Reset the cellular component to ensure network settings are changed
modem.gsmModem.sendAT(GF(“!R”));
modem.gsmModem.waitResponse(30000L, GF(“OK\r”));
// Force reset of the Digi component as well
// This effectively exits command mode
modem.gsmModem.sendAT(GF(“FR”));
modem.gsmModem.waitResponse(5000L, GF(“OK\r”));

// Sync the clock if it isn’t valid or we have battery to spare
if (getBatteryVoltage() > 3.55 || !dataLogger.isRTCSane()) {
// Synchronize the RTC with NIST
// This will also set up the modem
dataLogger.syncRTC();
}

// Create the log file, adding the default header to it
// Do this last so we have the best chance of getting the time correct and
// all sensor names correct
// Writing to the SD card can be power intensive, so if we’re skipping
// the sensor setup we’ll skip this too.
if (getBatteryVoltage() > 3.4) {
Serial.println(F(“Setting up file on SD card”));
dataLogger.turnOnSDcard(
true); // true = wait for card to settle after power up
dataLogger.createLogFile(true); // true = write a new header
dataLogger.turnOffSDcard(
true); // true = wait for internal housekeeping after write
}

// Call the processor sleep
Serial.println(F(“Putting processor to sleep\n”));
dataLogger.systemSleep();
}
/** End [setup] */

// ==========================================================================
// Arduino Loop Function
// ==========================================================================
/** Start [loop] */
// Use this short loop for simple data logging and sending
void loop() {
// Note: Please change these battery voltages to match your battery
// At very low battery, just go back to sleep
if (getBatteryVoltage() < 3.4) {
dataLogger.systemSleep();
}
// At moderate voltage, log data but don’t send it over the modem
else if (getBatteryVoltage() < 3.55) {
dataLogger.logData();
}
// If the battery is good, send the data to the world
else {
dataLogger.logDataAndPublish();
}
}
/** End [loop] */